Foot Placement Indicator for Balance of Planar Bipeds with Point Feet
نویسندگان
چکیده
If humanoid robots are to be used in society, they should be able to maintain their balance. Knowing where to step is crucially important. In this paper we contribute an algorithm that can compute the foot step location such that bipedal balance is maintained for planar bipeds with point feet and an arbitrary number of non‐massless links on a horizontal and flat ground. The algorithm is called the foot placement indicator (FPI) and it extends the foot placement estimator (FPE). The FPE uses an inverted pendulum model to capture the dynamics of a humanoid robot, whereas the FPI deals with multi‐body models with distributed masses. This paper analyses equilibrium sets and the stability of planar bipeds with point feet. The algorithm uses conservation of energy throughout the step, taking into account the instantaneous impact dynamics at foot strike. A simulation case study on a five‐link planar biped shows the effectiveness of the FPI.
منابع مشابه
Rotational Stability Index (RSI) point: postural stability in planar bipeds Goswami Dip∗ and Vadakkepat Prahlad
The postural stability of bipedal robots is investigated in perspective of foot-rotation during locomotion. With foot already rotated, the biped is modeled as an underactuated kinematic structure. The stability of such biped robots is analyzed by introducing the concept of rotational stability. The rotational stability investigates whether a biped would lead to a flat-foot posture or the biped ...
متن کاملBiped Without Feet in Single Support: Stabilization of the Vertical Posture with Internal Torques
We consider a two-link biped, a three-link biped, and a five-link planar biped without feet (with “point feet”). Their ankles are not actuated. The control torques are applied to the bipeds in the inter-link joints only. Then this family of bipeds is under actuated when only one leg tip touches the ground. It is difficult to control the walking of this kind of bipeds because they are statically...
متن کاملRotational Stability Index (RSI) point: postural stability in planar bipeds
The postural stability of bipedal robots is investigated in perspective of foot-rotation during locomotion. With foot already rotated, the biped is modeled as an underactuated kinematic structure. The stability of such biped robots is analyzed by introducing the concept of rotational stability. The rotational stability investigates whether a biped would lead to a flat-foot posture or the biped ...
متن کاملComparison of Static Postural Stability Performance Among Adolescents with Different Foot Types
The foot represents a small base of support as an important biomechanical parameter that the body maintains balance. It is assumed that postural stability performance could be affected by even minor alteration in the support surface in upright standing position. Therefore, the purpose of this study was to determine if individuals with different foot types would demonstrate differences in static...
متن کاملComparing Foot Placement Strategies for Planar Bipedal Walking
A number of foot placement strategies for walking have been proposed that make use of widely varying model complexities. Although a number of successful demonstrations have been individually shown in simulation and on physical robots, it is difficult to make a direct performance comparison due to the large differences in hardware, gait generation strategy, control system gains, actuator saturat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013